
YKAMELEAN24

Native Firmware Reference

March, 2018

YKAMELEAN24 firmware

Contents

1 Overview 2

2 Using the native firmware as a baseline to build upon 3
2.1 Adding user code to the native firmware . 3

3 Firmware source code project structure 3

4 Peripherals 5
4.1 GPIO peripheral library . 5

4.1.1 Write/output . 5
4.1.2 Read/input . 5

5 Modules 7
5.1 YKEMB module . 7

5.1.1 Write byte . 7
5.1.2 Read byte . 7

5.2 YKHaT module . 8
5.2.1 Get Temperature in oC . 8
5.2.2 Get Temperature in oF . 8
5.2.3 Get Humidity in %RH . 8
5.2.4 YKHaT module usage example . 8

5.3 TS100 module . 9
5.3.1 Enable the sensor . 9
5.3.2 Get raw sensor reading . 9
5.3.3 Get temperature reading in Celsius . 9
5.3.4 Get calibration value . 9

5.4 YKUR module . 9
5.4.1 Send command . 10
5.4.2 Get response . 10

6 USB Communication Protocol 11
6.1 Communication Packet Structure . 11

6.1.1 General Purpose I/O (GPIO) . 11
6.1.2 YKEMB Interface . 12
6.1.3 YKUR Interface . 13
6.1.4 YKHaT Interface . 13

7 The firmware and the bootloader 14

A Build process and tools 15

B Using the bootloader to update the firmware through USB 15
B.1 Bootloader application for Windows operating systems . 16
B.2 Bootloader application for Linux operating systems . 16

C Revisions 17

www.yepkit.com 1

YKAMELEAN24 firmware

1. Overview
Microcontrollers (MCU) are an integrating piece of many electronic systems providing the ability to im-
plement complex control systems and interface with a wide range of peripherals. They provide a high
flexibility, cost efficiency and footprint savings.
Nonetheless starting the development of a MCU based system from “green field” may be a daunt-

ing task due to the learning curve associated with programming it. This is the main reason why the
“accelerated” development MCU boards and tools proliferate nowadays, boards like arduino and the
tools associated with it brought the power of MCU environments to the general public and leveraged the
development of new an exiting DIY projects and systems.
We use extensively MCU development boards on our development process, testing development

hypothesis and for implementing “one-shot” projects/systems. With time the features we looked for
become more apparent and the high level design for our “ideal” development MCU board was born.
The main features we wanted in a MCU development board were:

1. Out of the box functionality that allowed us to plug and play with it.

2. Quick and easy programming capability.

3. Uncompromising in terms of evolution to production level.

YKAMELEAN24 was developed to provide the above features to developers. It provides a solid func-
tional baseline to build upon and enrich.
The native firmware provides a fully functional baseline that can be used in a plug and play manner

together with a PC with an USB connecting to provide out-of-the-box capability for the user to interact
with the low level electronic interfaces using the MCU IOs and interfaces/peripherals. A software for
Linux and Windows is available for download at the YKAMELEAN24 product page which implements
the commands used to control the board, peripherals and add-on modules. Add-on modules implement
the interface with additional boards like sensors and actuators1, more details on add-on modules are
presented in section 5 at page 7.
The native firmware is structured to facilitate the inclusion of additional code from the user and is

suitable to serve a baseline to be built upon. It will take care of initialization the basic configuration of
the YKAMELEAN24 board (for example the USB interface configuration) saving time to the developer.
Section 3 on page 3 provides further insight on how user code can be added to the baseline firmware
to expand it.
A USB bootloader is used to enable direct loading of the firmware to the board through USB, this

way a specific hardware programmer is not required facilitating the development process. To load the
firmware through USB we provide a PC software application available for download at the product page
on yepkit.com. For details refer to the appendix B on page 15.
While having a way to quickly implement “something” is useful we also wanted to do it with a produc-

tion level orientation where code efficiency, minimize rework, ability to use all of the MCU features, to
incorporate native Manufacturer libraries and tools is important. By using the native C programming lan-
guage, libraries and compilers we ensure uncompromising development from inception to production.
For details on the firmware build process and tools check appendix A on page 15.

1Check the product page for the most up to date list of supported add-on modules/boards

www.yepkit.com 2

YKAMELEAN24 firmware

2. Using the native firmware as a baseline to build upon
A flow to build you own version of the firmware, customized for your specific application, can be the
following.

1. Add your code to the native firmware;

2. Compile and build using MPLABX IDE and XC16 compiler;

3. Upload the firmware hex file to YKAMELEAN24 board using the board BootloaderApp for PC2.

2.1. Adding user code to the native firmware
While you are free to change the native firmware any way you want it, we recommend for user code to
be included using function calls in the functions in src/app/user_app.c. On the native firmware, in the
user_app.c source file you can find the following function implementation.

void user_app(void)
{

//place here user application front-controller functions
}

This function is called in every cycle of the main program eternal loop.
Now let’s assume that we wanted to implement an oven temperature controller that periodically polls

a temperature sensor to find out the temperature of the oven and based on that runs a PID (Proportional
Integral Deferential) algorithm to switch a relay which controls the oven power. To do this we could add
a function called, for example, oven_temperature_control_tasks() which implements all the control.
Now the user_app() function looks like the following.

void user_app(void)
{

//place here user application front-controller functions
oven_temperature_control_tasks();

}

3. Firmware source code project structure
The firmware source code project uses the following structure.

/ykamelean24_firmware/
+ src/

+ app/
+ inc/
+ USB/
+ peripheral/

+ io/
+ lcd/

2For details on how to use the BootloaderApp refer to appendix B

www.yepkit.com 3

YKAMELEAN24 firmware

+ modules/
+ ykemb/
+ ykhat/
+ ts100/
+ ykur/

src consolidates all the project source code.

app contains the “applicational” components and user code.

USB has the USB communication library.

peripheral consolidates the MCU peripheral libraries.

modules consolidates the add-on modules libraries.

www.yepkit.com 4

YKAMELEAN24 firmware

4. Peripherals
The native firmware provides peripheral interface libraries. To use the functions exported by each of the
libraries you must include the respective header file in the your code.
An example of the use of the peripheral libraries is the USB peripheral interface functions in the

src/app/app.c source file. For details on using the USB interface refer to section 6 on page 11.

4.1. GPIO peripheral library
One of the basic but useful features of the MCU are the digital Input/Output (I/O) pins. The gpio pe-
ripheral library provides functions to write (output) and read (input) digital I/O, taking care of all the
configuration of the respective MCU pins to function as a digital input or output depending if a read or
write functions is called.
The following I/O pins are supported by the gpio peripheral library.

Pin I/O Input Buffer Type Pin Index
RB15 Input/Output Schmitt Trigger 1
RB14 Input/Output Schmitt Trigger 2
RB13 Input/Output Schmitt Trigger 3
RB3 Input/Output Schmitt Trigger 4
RA1 Input/Output Schmitt Trigger 5
RB9 Input/Output Schmitt Trigger 6
RB8 Input/Output Schmitt Trigger 7
RB7 Input/Output Schmitt Trigger 8
RB4 Input only Schmitt Trigger 9
RB1 Input/Output Schmitt Trigger 10
RA0 Input/Output Schmitt Trigger 11
RA2 Input/Output Schmitt Trigger 12
RA3 Input/Output Schmitt Trigger 13
RA4 Input only Schmitt Trigger 14
RB2 Input/Output Schmitt Trigger 15

This peripheral library source code is located in the src/peripherals/io/ firmware project folder.

4.1.1. Write/output

The following function configures a I/O pin to digital output and sets it to High or Low depending if a 1
or 0 was written.

void gpio_write(unsigned char pin_index, unsigned char value)

pin_index - I/O pin index as defined in the table above.

value - 0 or 1 for High and Low, respectively.

4.1.2. Read/input

The read function configures the I/O to digital input and returns 1 or 0 depending if the input is at High
or Low level, respectively.

unsigned char gpio_read(unsigned char pin_index)

www.yepkit.com 5

YKAMELEAN24 firmware

pin_index - I/O pin index as defined in the table above.

This function will return the digital the value read from the pin, 0 if Low and 1 if High.

www.yepkit.com 6

YKAMELEAN24 firmware

5. Modules
The module libraries export functions to interact with add-on boards or components. Currently the fol-
lowing modules are supported.

• ykemb - YKEMB board interface module.

• ykhat - YKHaT Humidity and Temperature board interface module.

• ts100 - RTD PT100 based temperature sensor interface module.

• ykur - YKUR board control interface module.

The module libraries are located in the src/modules/ folder. Each module library will have it’s own
subfolder.

5.1. YKEMB module
YKEMB is an EEPROM board that can be used with YKAMELEAN24 as an add-on board to pro-
vide persistent data memory. These add-on boards are connected using the I2C bus and multi-
ple EEPROMs can be stacked as they can be configured with different addresses. Please check
/www.yepkit.com/product/300107/YKEMB for details.
The ykembmodule library provides functions for writing and reading bytes to and fromYKEMBboards.

To use this functions in your code you need to include the ykemb.h header file.

5.1.1. Write byte

To write a byte to a YKEMB board EEPROM memory use the following function.

unsigned char ykemb_byteWrite(unsigned char dataByte,
unsigned char deviceAddr,
unsigned char *wrtAddr)

dataByte - Byte to be written to the YKEMB EEPROM.

deviceAddr - YKEMB device I2C address.

wrtAddr - Pointer to the two byte memory address of the byte to be written.

5.1.2. Read byte

To read a byte from a YKEMB board EEPROM memory use the following function.

unsigned char ykemb_i2cSelByteRead(unsigned char deviceAddr,
unsigned char *readPrevAddr,
unsigned char *byteBuff)

deviceAddr - YKEMB device I2C address.

readPrevAddr - Pointer to the two byte address of the byte to be read.

byteBuff - Pointer to the byte that will store the byte read.

www.yepkit.com 7

YKAMELEAN24 firmware

5.2. YKHaT module
YKHaT is a breakout board of a Temperature and Humidity sensor. The board is con-
nected to YKAMELEAN24 boards using the I2C bus. For details on the YKHaT please visit
www.yepkit.com/product/300111/YKHAT.
To use the YKHaT module functions in your own firmware code you need to include the

src/modules/ykhat/ykhat.h header file on your source code.

5.2.1. Get Temperature in oC

Function that fetches the current temperature reading from the sensor and returns the value in Celsius
unit.

int ykhat_get_tempC(char addr)

addr - I2C address of the target YKHaT sensor board.
This board returns an int with the temperature reading in oC unit.

5.2.2. Get Temperature in oF

The temperature can also be obtained in Fahrenheit unit, for that use the following function.

int ykhat_get_tempF(char addr)

addr - I2C address of the target YKHaT sensor board.
This board returns an int with the temperature reading in oF unit.

5.2.3. Get Humidity in %RH

To get the relative humidity level reading, from the sensor, use the following function.

int ykhat_get_hum(char addr)

addr - I2C address of the target YKHaT sensor board.
This board returns an int with the humidity reading in %RH unit.

5.2.4. YKHaT module usage example

The native firmware makes available through the USB interface the functionalities of the YKHaT module
library, at the implementation of this interface can be used as reference on how to use the ykhat library
functions.
In the src/modules/app/app.c source file there is a handler function example for using the YKHaT

module functions. For example, the following handler function is called when a YKHaT command is
received through USB by the YKAMELEAN24 board.

char app_ykhat(unsigned char *ReceivedDataBuffer, unsigned char *ToSendDataBuffer)

Where:
ReceivedDataBuffer - Pointer to the 64 byte buffer containing the received command through USB
interface.

ToSendDataBuffer - Pointer to the 64 byte buffer to be transmitted back to the USB host.

www.yepkit.com 8

YKAMELEAN24 firmware

5.3. TS100 module
TS100 is a Platinum (Pt100) Resistance Temperature Detector (RTD) sensor board with a Serial Periph-
eral Interface (SPI). For details on the TS100 board please visit www.yepkit.com/product/300103/TS100.
The module library makes available functions to:

• Enable the sensor;

• Get raw sensor reading;

• Get temperature reading in Celsius;

• Get calibration value.

5.3.1. Enable the sensor

The following function will configure the SPI to communicate with TS100 board and enable the sensor.
For details on how to connect the TS100 to a YKAMELEAN24 board refer to “Ykamelean24 add-on
modules reference” document and “TS100 setup guide” page at yepkit.com.

void ts100_spi_enable(void)

5.3.2. Get raw sensor reading

Gets from the sensor the raw reading of Pt100 digitalized to 22 bit by the inboard ADC. Please check
the TS100 board documentation for details on how to convert the raw reading into temperature.
The function is the following.

unsigned long ts100_get_sensor_reading(void)

5.3.3. Get temperature reading in Celsius

To get the temperature already converted to Celsius unit, use the following function.

double ts100_get_temperature(void)

5.3.4. Get calibration value

A calibration factor should be used to get the most accurate temperature values. To calibrate set the
TS100 calibration jumper3 and call the following function to fetch the calibration value to be considered.

double get_calibration_val(void)

5.4. YKUR module
To control the YKUR board4 through I2C you can use the functions made available by this module. The
functionalities exported by the module are:

• Send command;
3Please refer to TS100 product page for documentation on how to set the board into calibration.
4www.yepkit.com/product/300106/YKUR

www.yepkit.com 9

YKAMELEAN24 firmware

• Get response.

YKUR board in the I2C interface is configured in slave mode being the responsibility of the master,
the Ykamelean24 board, to send commands and ask for responses when applicable.

5.4.1. Send command

The YKUR documentation, that can be found at the product page5, under the I2C control interface has
a mapping between byte value OpCodes and actions to be executed by the YKUR. The send command
function, bellow, sends this OpCode value to a YKUR board for it to execute the corresponding
action/command.

char ykur_i2cSendCommand(unsigned char cmd_buffer, char num_bytes, unsigned char address)

5.4.2. Get response

In some situations it is possible to fetch information from the YKUR board6. To do so use the following
function.

char ykur_i2cGetResponse(char *cmd_buffer, char address)

5www.yepkit.com/product/300106/YKUR
6Check documentation on the YKUR product page.

www.yepkit.com 10

YKAMELEAN24 firmware

6. USB Communication Protocol
A key feature of YKAMELEAN24 is the level of access and control the user has through the USB
interface. Most of the board functionalities can be configured, accessed and controlled through the
USB connection. This allows the user to explore the board from a PC with an USB connection.

An USB host software to control the YKAMELEAN24 board is available for download in the prod-
uct page.

YKAMELEAN24 board will appear to the USB host as an HID device and the communication
protocol is based on 64 byte messages.

6.1. Communication Packet Structure
• Byte 0 - Scope/Interface

• Byte 1 - Message Type

• Byte 2 - Action

• Byte 3 to 63 - Action specific

Communication from the USB host (typically the user PC) to the board must have a target scope or
interface, for example if the user wants to control an I/O pin the scope will be the GPIO. This scope is
defined by the first byte of the USB message/report sent from the host.

There are two main groups of scopes/interfaces, the so called inner scopes and the modules
scopes.

Inner scopes are related to board features and peripherals (e.g., I/O’s, ADC, I2C and other).

Modules scopes are related to add-on boards that can be connected to the YKAMELEAN24.

Bellow are the scopes supported by the current version of the firmware.

Byte 0 value Scope Scope type Description
0x01 gpio Inner Control general I/O pins
0x10 ykemb Module Interface with YKEMB board
0x11 ykur Module Interface with YKUR board for control through I2C
0x12 ykhat Module Interface with YKHaT temperature and humidity sensor board

6.1.1. General Purpose I/O (GPIO)

In this scope the GPIO’s are all configured to digital I/O. The configuration is done pin by pin when a
gpio command is received and just for the targeted pin. No pre-configuration is assumed, so every time
a command is received the proper configuration to execute such command is performed, for example if
a Write command is received for pin RB14 the high level steps are the following:

1. Configure pin RB14 as digital output;

2. Set output pin level (high/low) as defined by the command received.

www.yepkit.com 11

YKAMELEAN24 firmware

Note that if this specific pin was previously configured as being used by a peripheral that configuration
will be overwritten by the one associated with the command received.

The structure of a gpio scope command is the following.

Byte number Value
0 0x01
1 0x01 - Command

0x02 - Response
2 0x01 - Write command

0x02 - Read command
3 Pin index
4 Pin value (1 or 0)

7 to 63 don’t care

Pin index is defined in the following table.

Index Pin
1 RB15
2 RB14
3 RB13
4 RB3
5 RA1
6 RB9
7 RB8
8 RB7
9 RB4
10 RB1
11 RA0
12 RA2
13 RA3
14 RA4
15 RB2

Pin value is the value to be written to the addressed pin or the value read from the pin. A 0 value is a
pin at Low level. A 1 value is a pin at High level.

6.1.2. YKEMB Interface

The ykemb interface allows the user read/write access from the USB host to a YKEMB board connected
to the YKAMELEAN24 board. Multiple YKEMB boards can be connected to a single YKAMELEAN24
as they can be set up with distinct I2C addresses.

The following table describes the command structure for the ykemb interface scope.

www.yepkit.com 12

YKAMELEAN24 firmware

Byte number Value
0 0x10
1 0x01 - Command

0x02 - Response
2 0x01 - Write command

0x02 - Read command
3 I2C device address
4 Memory address High byte
5 Memory address Low byte
6 Data byte

7 to 63 don’t care

I2C device address is the three less significant bits of the ykemb device I2C address which are
configured by the user through the on board three way DIP switch.

Memory address High byte is the most significant byte of the two byte memory address to/from
which the data should be written/read.

Memory address Low byte is the less significant byte of the two byte memory address to/from which
the data should be written/read.

Data byte is the data byte to be written.

6.1.3. YKUR Interface

The firmware implements an USB interface to interact with the YKUR i2C control interface. With it the
YKAMELEAN24 works as a bridge between USB and I2C. This is useful for testing the I2C connection
between the boards or to improve integration in a use case or setup where a both a YKAMELEAN24
board and YKUR board is used and the user does not want to have two USB cables (one for YKAME-
LEAN24 and another for the YKUR).
The USBmessage structure is the following for a command sent by the USB host (e.g., PC) to YKAME-

LEAN24.

Byte 0 Byte 1 ... Byte 63
0x11 opcode don’t care

When the YKAMELEAN24 receives this command message it will forward the opcode to the YKUR
board through I2C.

6.1.4. YKHaT Interface

The following table describes the command structure for the ykhat interface scope.

www.yepkit.com 13

YKAMELEAN24 firmware

Byte number Value
0 0x12
1 0x01 - Command

0x02 - Response
2 0x01 - Get temperature in oC

0x02 - Get temperature in oF
0x03 - Get humidity in %RH
0x11 - Start sensor reading

3 I2C device address
4 Response value MSB
5 Response value LSB

6 to 63 Don’t care

7. The firmware and the bootloader
YKAMELEAN24 boards are preloaded with a bootloder and the latest stable version of the firmware.
The main purpose of the bootloader in the YKAMELEAN24 boards is to enable the user to load new
versions or their own custom versions of the firmware using the USB interface instead of requiring a PIC
programmer.
The user can build their own version of the firmware, creating a hex file and then load it to the board

directly from the PC through USB using the Host Bootloader application, which is available for download
from the product page.
Nonetheless, if the user has a PIC programmer it can be used, as usual, to program the firmware to

the microcontroller (MCU).

To build a custom firmware the user should use the MPLABX software from Microchip, freely
available for download, and include the src/hid_boot_p24FJ128GB202.gld linker file in their own
firmware project.
Also the bootloader and the firmware should share the same configuration bits. The configuration bits

used in the bootloader are in the src/inc/configuration_bits.h file in the firmware project folder.

www.yepkit.com 14

YKAMELEAN24 firmware

A. Build process and tools
To build this firmware the following tools are used.

• MPLABX IDE

• XC8 Compiler

Both can be downloaded from http://www.microchip.com and a free license is available.

B. Using the bootloader to update the firmware through USB
The YKAMELEAN24 board bootloader has the capability to program the device with firmware images
received through USB. To do so a host application capable of interacting with the board bootloader is
required.

The bootloader is compatible with the Microchip MLA utilities HIDBootloader application which
can be used to program new firmwares to the YKAMELEAN24 boards.

To update the firmware using the USB you will need the YKBootloader application which allows
to import firmware images and load them to Ykamelean24 boards using the USB.

This application is available for download at the YKAMELEAN24 product page.

Steps to update the firmware version on YKAMELEAN24 board through USB with the bootloader
application:

1. Download the firmware binary file (hex file);

2. Connect the board to your PC through USB;

3. Set the board into bootloader mode by connecting SDA/RB and SCL/RB8 pins to GND and resetting
the device (press RESET button), at which point the indicator LED should start to fast blink indicating
that the board is in bootloader mode;

4. Open the USB Bootloader Application (YKBootloader for Linux and HIDBootloader for Windows);

www.yepkit.com 15

YKAMELEAN24 firmware

5. Load the firmware binary file by clicking Import Firmware Image;

6. Program the new firmware image by clicking Erase/Program/Verify Device;

7. Once the programming process has finished, reset the device by clicking Reset Device or pressing
the board RESET button.

B.1. Bootloader application for Windows operating systems
A package with the Microchip MLA HIDBootloader application binaries for Windows op-
erating systems is available for download at the YKAMELEAN24 product page. Refer to
http://www.microchip.com/mplab/microchip-libraries-for-applications/mla-license for MLA licensing
details.

Bellow are the steps to run the bootloader application on Windows systems.

Start by downloading the Bootloader Application for Windows at the YKAMELEAN24 product
page and extract the files into a folder of your choosing. Open a command line console (cmd) and
navigate to the folder containing the extracted files and run the following command.

HIDBootloader.exe 0x04D8 0xF25C

Where 0x04D8 and 0xF25C are the board VID and PID respectively.

Note that if you click on the executable HIDBootloader.exe file the application will open but it
will not recognize the YKAMELEAN24 board as the VID and PID were not provided.

B.2. Bootloader application for Linux operating systems
For Linux the application can be build from the source code. Both the source code and build instruc-
tions for the most up-to-date version is available at the https://github.com/Yepkit/ykam24cmd github
repository.

Once built, run this application just by clicking on the YKBootloader executable file. In this case
there is no need to call from the command line and provide the VID and PID.

www.yepkit.com 16

YKAMELEAN24 firmware

C. Revisions
1.0.0 New source code structure and new components.

• New source code structure

• GPIO peripheral added.

• YKHaT module added.

• YKUR module added.

0.1.0 Initial release.

www.yepkit.com 17

	Overview
	Using the native firmware as a baseline to build upon
	Adding user code to the native firmware

	Firmware source code project structure
	Peripherals
	GPIO peripheral library
	Write/output
	Read/input

	Modules
	YKEMB module
	Write byte
	Read byte

	YKHaT module
	Get Temperature in ºC
	Get Temperature in ºF
	Get Humidity in %RH
	YKHaT module usage example

	TS100 module
	Enable the sensor
	Get raw sensor reading
	Get temperature reading in Celsius
	Get calibration value

	YKUR module
	Send command
	Get response

	USB Communication Protocol
	Communication Packet Structure
	General Purpose I/O (GPIO)
	YKEMB Interface
	YKUR Interface
	YKHaT Interface

	The firmware and the bootloader
	Build process and tools
	Using the bootloader to update the firmware through USB
	Bootloader application for Windows operating systems
	Bootloader application for Linux operating systems

	Revisions

